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ABSTRACT 
Various calibration curve models for solid-state calorimeters are compared to determine which 
model best fits the calibration data.  The calibration data are discussed.  The criteria used to select 
the best model are explained.  A conclusion regarding the best model for the calibration curve is 
presented.  These results can also be used to evaluate the random and systematic error of a 
calorimetric measurement. 
 
INTRODUCTION 
A linear/quadratic model has been used for decades to fit the calibration curves for wheatstone 
bridge calorimeters.  Excellent results have been obtained using this calibration curve model.  The 
Multical software package uses this model for the calibration curve.  The choice of this model is 
supported by 40 years [1] of calorimeter data.  There is good empirical support for the 
linear/quadratic model.  Calorimeter response is strongly linear.  Calorimeter sensitivity is slightly 
lower at higher powers; the negative coefficient of the x2 term accounts for this. 
 
The solid-state calorimeter is operated using the Multical [2] software package.  An investigation 
was undertaken to determine if the linear/quadratic model is the best model for the new sensor 
technology used in the solid-state calorimeter. 
 
THE DATA 
At the time this analysis was performed, 84 measurements of NIST-traceable heat standards had 
been made with the Solid State Calorimeter [3] developed in the Safeguards Science and 
Technology Group at Los Alamos National Laboratory.  Most of the low-power measurements were 
made on single standards.  Most of the high-power measurements were made by placing two or 
three standards in the sample cell of the calorimeter and measuring the total power produced by the 
standards.  The power range covered by these single and combined standards was 0.72 milliwatts to 
6.98 watts.  Multiple measurements were made at each of the power levels.  The number of 
measurements taken at each power level is shown in Table I.  The data are plotted on a log- log plot 
in Fig. 1.  The multiple measurements at each power level are not apparent in the plot because the 
variation in the signal at each power level is smaller than the plotting symbol. 
 
Appropriate baseline values, averaging approximately 3 nanovolts, have been subtracted from the 
calorimeter output values, in accordance with standard calorimetry practice. 
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Table I.  Power Levels and Replications 
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Fig. 1.  Calibration data 

 
MODELS 
Regression models are generally evaluated using several accepted figures of merit.  The R2 value 
quantifies the degree to which the explanatory variable(s) predict the behavior of the response 
variables.  For all models discussed below (except the first logarithmic model), the calculated R2 
values were reported as 1.000.  The R2 value was therefore of no value in choosing the best model.  
The F statistic indicates the strength of the relationship between the explanatory and response 
variables.  Weak relationships result in low F values.  Strong relationships result in high F values.  
These could be useful in discriminating between models, but only if all the models being compared 
have the same number of explanatory variables.  Because this is not the case, we cannot use the F 
values to compare the models. 
 
Residuals provide an excellent indication of the quality of the fit provided by a model.  Residuals 
are the differences between values calculated from the fitted equation and known values.  They are 
more subjective than the figures of merit discussed above, but they make important trends in the 
data very clear.  They also demonstrate the agreement between each data point and the fitted line. 
 
Standard regression analysis requires that the error distribution be constant across the range of data.  
The error terms should be independently and identically normally distributed, and the distribution 
should be centered around zero.  Error terms with such a distribution would lead to residuals with a 
uniform distribution across the range of data.  Trends in the values or variation of residuals indicate 
that the normal error distribution assumption is not valid. 
 
Figure 2 provides an example of normally distributed residuals.  This plot was produced using a 
random number generator.  The random numbers represent residual values and were taken from a 

Power (mW) Measurements Power (mW) Measurements Power (W) Measurements
0.72 6 78.6 5 0.81 4
1.97 7 150 5 1.25 10
1.96 5 230 5 2.5 3
4.33 5 420 8 3.74 5

17.40 5 570 5 6.98 6



  3

standard normal distribution.  The random residuals were then assigned to the power values shown 
in Table I. 
 

Fig. 2.  An Example of Random Residuals 
 
The highly linear nature of calorimeter response suggests a simple linear model (y = B1x) as the 
starting point.  An intercept is not included in the model because we monitor the calorimeter 
baseline value and subtract the baseline from each measurement result.  This means that the signal 
(net output) for zero power will be zero voltage. 
 
Standard regression analysis tests indicate that virtually all of the behavior of the response variable 
(the output voltage) is explained by the model.  However, the residuals shown in Fig. 3 show that 
there is room for improvement.  Ideally, the residuals from a fit should be uniformly distributed 
around zero, with no apparent structure across the range of the residuals. 
 

Fig. 3.  Linear Model Residuals 
 
The residuals are not constant across the power range.  The pattern indicates the need for a 
nonlinear factor in the model.  This agrees with the observation that calorimeter sensitivity 
decreases slightly with increasing power. 
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Adding a B2x2 term to the model should account for the nonlinearity in the data.  The complete 
model is therefore y = B1x + B2x2.  This is the model used by the Multical software package.  The 
residuals from this model (see Fig. 4) are clearly an improvement over the simple linear model.  All 
the residuals are now uniformly distributed around zero.  The residuals become more widely 
dispersed as power increases.  This is due to the fact that the noise of a calorimeter measurement 
increases as power increases. 
 

Fig. 4.  Residuals from the Unweighted Linear-Quadratic Model 
 
Standard regression methods as employed in this paper require that errors (and hence, residuals) be 
independently and identically normally distributed.  When this requirement is violated, Bowen and 
Bennett [4] recommend two possible remedies (data transformation and weighted regression).  Both 
of their recommendations were implemented. 
 
Bowen and Bennett recommend a logarithmic transformation as being potentially useful when the 
error in the response variable is proportional to the value of the explanatory variable.  The resulting 
ln(y) = B0 +B1x model produces residuals that are highly structured.  The data presented in Fig. 5 
shows that they also cover the largest range of any model included in this investigation. 

Fig. 5.  Residuals from Log-Transformed Response Model 
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If both the response and explanatory variables are logarithmically transformed, the results improve 
considerably, as shown in Fig. 6.  This model is ln(y) = B0 + B1 ln(x). 

Fig. 6.  Residuals from Log-Log Model 
 
These residuals cover less of a range than in any other model.  The low-power residuals are 
excellent.  However, as the power increases, the variation in the residuals increases slightly.  The 
positive trend over the highest power levels is also a concern.  This may indicate that this model 
will be biased at these power levels.  It may be due to the slight changes in calorimeter sensitivity 
for items of differing powers. 
 
The other recommendation for dealing with non-normal residuals was weighted regression.  The 
assumption behind weighted regression analysis is that data are more reliable where the variance is 
lower.  Weighted regression is an iterative process in which the weight assigned to a particular data 
point for the final regression is inversely proportional to the square of the residual for that data point 
in the first regression.  Those data points with small initial residuals presumably represent more 
reliable data and are given higher weights in the final analysis. 
 
A weighted regression was performed using the linear/quadratic model.  The weights were assigned 
based on the residuals already shown for the linear/quadratic model.  The parameters (and therefore 
the residuals) obtained from the weighted regression did not differ significantly from the parameters 
obtained from unweighted regression.  This implies that the linear/quadratic model is not affected 
by the increasing variability of the residuals with increasing power.  This increases our confidence 
in the appropriateness of this model; the physical basis of the model appears to be strong enough to 
obtain a good fit, even when the analysis is based primarily on the lower range of the data. 
 
We will compare the linear/quadratic model and the log- log model by examining how they perform 
as calibration curves for the calorimeter.  Power values were calculated using each of these 
calibration models for a variety of voltages.  The calculated power values are compared to the 
nominal values in Table II.  In this table, model 1 is the linear/quadratic model, and model 2 is the 
log- log model. 
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Table II.  Linear-Quadratic Model/Log-Log Model Prediction Comparison 

 
The average absolute value of the bias for the linear/quadratic model was 0.246%.  For the log-log 
model, the average absolute value of the bias was 0.239%.  These values are, for practical purposes, 
identical. 
 
The fitted equations from the two models were used to calculate power values for each of the output 
voltages observed at powers of 1.97 mW, 0.42 W, 1.25 W, and 3.74 W.  The Mean Square Error of 
each set of observations was determined according to the formula 

 
where Yi is the calculated power value for each output voltage, Yavg is the average of the calculated 
values at each output voltage, and n is the number of calculated values at each power value.  The 
results are shown in Fig. 7. 

Fig. 7.  MSE comparison. 
 

Calculated Power (Watts)Nominal Bias Ratios   Absolute Value of
Input (mV) Model 1 Model 2 Power Model 1 Model 2            the Bias

0.05 0.0043 0.0043 0.0043 0.9951 0.9946 0.49% 0.54%
0.18 0.0174 0.0174 0.0174 0.9993 0.9977 0.07% 0.23%
0.83 0.0784 0.0787 0.0786 1.0021 0.9993 0.21% 0.07%
1.59 0.1511 0.1516 0.1514 1.0024 0.9992 0.24% 0.08%
2.42 0.2295 0.2303 0.2298 1.0014 0.9980 0.14% 0.20%
4.41 0.4187 0.4201 0.4201 1.0034 1.0000 0.34% 0.00%
6.02 0.5725 0.5744 0.5716 0.9984 0.9952 0.16% 0.48%
8.54 0.8117 0.8141 0.8142 1.0031 1.0002 0.31% 0.02%

13.17 1.2533 1.2559 1.2466 0.9946 0.9925 0.54% 0.75%
26.16 2.4988 2.4971 2.4968 0.9992 0.9999 0.08% 0.01%
39.07 3.7444 3.7304 3.7393 0.9986 1.0024 0.14% 0.24%
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The MSE values are, for practical purposes, identical for the lower power data sets.  At the highest 
power, model two produces data with a lower MSE than model one.  As is apparent in the residuals, 
model two produces more consistent data at the highest power level.  However, while the data is 
more consistent, the residuals also imply that the model two results are biased, while no such bias is 
apparent in the model one residuals.  The model one residuals display greater variation, but are 
centered on zero.  This implies that they are unbiased. 
 
CONCLUSION 
The linear/quadratic model (y = B1x + B2x2) has strong empirical support.  It has been used 
successfully for years.  A rigorous investigation confirms that it is the best model for calorimetric 
calibration, despite violation of the uniformity of errors requirement.  It is unaffected by the lack of 
residual uniformity and is bias-free across the power range, unlike the log- log model.  The fitted 
equation for the solid-state calorimeter data is 
 

y = 10.54054±0.00811x – 0.02855±0.00121x2 

 
The Multical software package uses model one. 
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